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Error-correcting codes on scale-free networks
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We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-
density parity-check codes with the highest performance known to date have degree distributions well fitted by
a power-law functiomp(k) ~ k™7 with y close to 2, which suggests that codes built on scale-free networks with
appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the
Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the
form p(k)=C(k+«a)”?, with k=2 and suitable selection of the parameterand vy, indeed have very good
error-correction capabilities.
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A variety of complex network$l] exhibit a topological We first show that the degree distributions of LDPC codes
structure in which the connectivity between their constituentwith the highest performance known to date are well fitted
nodes follows a simple power law. Examples of such scaleby power-law functions. Motivated by this finding, we gen-
free networks include the internf,3], the Worldwide Web  erate a degree distribution according to the functjgk)
[4,5], social networkg6], metabolic networkg7], etc. Ex-  =C(k+a)~” and fine-tune the parametesisand y to maxi-
tensive studies have been made to understand the topologiGal,e the code’s performance. We investigate the error-

features and evolving dynami¢8-1Q of these networks. .,ection capability of these codes over a binary erasure

While many intriguing properties concerning the structuralchannel and compare them with therRNADO code[17], the
aspect of complex networks have been revealed thanks Wrst commercialized LDPC code '

these efforts, relatively little is known about the effects of The codes built on scale-free networks considered here

specific connectivity structures on networks’ functional be- ) . . .
hgvior[ll]. In orderyto properly operate under a certain en-2re basically LDPC codes in that the associated parity-check

vironment or, in a more active sense, to successfully acconmatrices: are sparse and the . belief propagation algorithm
plish a given task, a complex network may favor onel13-13 |s.employed for decoding. When invented by_ Gal-
particular structure over another. For practical applications, ittger[13] in the early 1960s, LDPC codes were considered
now appears that more attention needs to be paid tiutie 0 _be |mpr§u_:t_|cable to |rr_1plement due to the limited compu-
tional aspectof these complex networks viewed as whole tational abilities of the time, and were subsequently nearly
systems or organisms working for particular purposes. forgotten. It was only recently, after they were shown to

Recent advances in channel coding theory have led to thgeld excellent performance comparable torRBO codes
perception that the state-of-the-art capacity-approachin§l4,19, that LDPC codes began to draw considerable inter-
codes, such asurBO codes[12] and low-density parity- est from the coding community. LDPC codes have attracted
check(LDPC) codes[13-15, can be understood in terms of attention also from the physics community, and there have
graphs(or networkg consisting of nodes and edgd$]. The  been some statistical-physics approaches in the analysis of
function of these graphs is to carry out error correction, i.e.L DPC codes, which take advantage of the resemblance be-
to recover original data transmitted over noisy channels, byween LDPC codes and spin-glass modé8—21.
iteratively passing certain messages through edges connect- A LDPC code can be represented by a bipartite graph in
ing neighboring nodes. The art of developing a high-which there are two different types of nodes: variable nodes
performance error-correcting code lies in designing a conand check nodes. Nodes of one type are connected by edges
nectivity structure of a graph in such a way as to make thenly to nodes of the other type. Variable nodes are associated
code built on it perform a desired function. One very impor-with data bits, and check nodes examine whether the variable
tant issue concerns finding the connectivity distribution thahodes connected to them satisfy parity-check equations. Er-
achieves the Shannon capacity limit. Most attempts to obtainor correction of corrupted data bits is performed by passing
optimal connectivity distributions, however, have been lim-certain messages, e.g., likelihood ratios, through edges back
ited to numerical optimization techniquét5,22 such as a and forth between variable and check nodes. It is known
hill climbing method and a genetic algorithm, and a com-from density evolution analysid 5] that, under the assump-
plete understanding of the connectivity structure specific tdion of a tree-structured random graph with no closed loops,
capacity-achieving codes is still lacking. Inspired by thethe error-correction capability of a code is solely determined
ubiquitous nature of scale-free networks, one may asky the degree distribution. Codes with irregular degree dis-
whether their connectivity structure could offer any insighttribution have been found to substantially outperform those
into seeking good graph-based codes. with regular degree distribution.

In this paper we address the question whether scale-free We begin by inspecting the degree distributions of some
networks whose connectivity distribution follows a power high-performance LDPC codes. Figurgajl shows the
law can function effectively as good error-correcting codesvariable-node degree distribution of the LDPC code designed
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degree distribution of our code and optimize the parameters
FIG. 1. Degree distributions for high-performance LDPC codes.« and y to achieve the best performance.

(@) The LDPC code designed by Chuatal. (Table Il of[22]). (b) Some empirical results known about LDPC codes help us
The TorRNADO code with maximum degreé,,,=610[17,23. The  to further refine our code. The most well known findings
best fitting lines have slop&g) y=2.14 and(b) y=2.02. related to features of good LDPC codes may be that the

variable nodes of degree 1 should be removed since they do

by Chunget al{22], which has been optimized for an addi- Nt contribute to error correction and that the codes with
tive white Gaussian noise channel and approaches the Shafmost uniform check-node degree yield good performance
non limit within 0.0045 dB, presently the world record. [15:22,23. Taking these into account, we let the sum in
Here, in order to obtain a meaningful distribution from the Ed{(3) start fromk=2, and restrict the check-node degree to
irregularly spaced data(k) in Table Il of Chunget al[22], WO consecutive integers: the generating f“”ifl“or‘ for the
we took a local average over a bin of length,,—k_;)/2:  Check-node degree is written B&) =bx +(1-b)x™", where
the parameterk andi are easily determined once a variable-
P(k) node degree distribution is selected. This choice of the
p(ky) = (kioy—k_)I2 (1) check-node degree distribution enables us to design a code
AR without restrictions ond,5, for any given code rate; this
where P(k;) is the fraction of nodes with degrde and is  property, however, is not shared by the right-regular se-
given by P(k;)=C\(k)/k;, in which \(k;) is the fraction of quence23] for which d,5 IS allowed to have only a special
edges connected to a variable node of dedggesnd C is a  set of values.
normalization constant. It can be seen from Fig).that the The performance of an LDPC code over a binary erasure
degree distribution is well fitted by a power-law function channel can be evaluated by the density evolution method
p(k) ~ k™ with y=2.14. A more dramatic correspondence is[15] as follows. Leté be the erasure probability of a given
observed for the variable-node degree distribution of thechannel, and consider a code with a degree distribution pair
TORNADO code[17,23, as is clearly seen in Figh). The  MX)=I\x* and p(x)=Zp XL, where)y (py) is the frac-
TORNADO code has been optimized for an erasure channdion of edges connected to a varialtdieck node of degree
and has a Poisson distribution for its check-node degree did Note that the distribution here is defined in terms of the
tribution. The power-law function that best fits the variable-fraction of edges, not the fraction of nodes as before. Then, if
node degree distribution is found to have an exponent the belief propagation algorithm is used for decoding, the
=2.02, and the fitting appears to be nearly perfect for largenessages passed between the variable and check nodes are
k. We also find that the right-regular sequence of Shokrollahknown to evolve a$15,17
[23] that slightly beats theORNADO sequence is well fitted _
by a similar power-law function. % =XM1 = p(1-X-1)), (4)
The fact that many high-quality LDPC codes have degregvherex, denotes the expected fraction of erasure messages at
distributions well fitted by power-law functions stimulated us the Ith iteration andx, is its initial value given by,= 6. The
to test scale-free networks as error-correcting codes. Followecovery of original data is successfully donejitonverges
ing the approach of Newmaet al[24], we write the gener- to zero. The threshold*, defined by the supremum of af
ating function for a general scale-free network in the form: that result in successful decoding, tells the code’s perfor-

d-1 d mance. For a given code raf, the threshold is upper
- XY K bounded by the channel capacityR+17].
o= g) AXF gl pUOX, @ With the help of the above density evolution method, we

calculate the error-correction capability of the scale-free net-
where the fraction of nodes with degrée=d, follows a  works given in the form of E¢3). The results are shown in
power law p(k)=Ck™”, and the termsy with low degree Fig.2 as a function of the maximum variable-node degree
k< d, are separated from the second sum to allow for pose,,., Where the code rate is fixedRt0.5. It is seen that the
sible deviation from the power law for sméll as is often the threshold erasure probabilit§* increases as the maximum
case for general scale-free networks. The generating functiovariable-node degree increases. For laigg, the threshold
in Eq(2), however, contains too many parameters to be amealmost reaches the theoretical upper boundrlindicating
nable to numerical optimization unlesd is sufficiently  that the error-correction capability of our code is very good.
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FIG. 2. Error-correction capability of optimized scale-free net- FIG. 3. lteration numbers of optimized scale-free networks
works over a binary erasure channel. The code raR=i.5. (solid curveg and theTorRNADO code(dashed curvefor maximum
degreega) d,,=610 and(b) d,4=1009. The criterion for conver-
For comparison, we have also studied the error-correctiofence of decoding is set to bip<1x10°°
capability of codes that have degree distributions other than
the power-law distribution, namely, an exponential distribu-
tion of the formp(k) ~ e #k*® and a Gaussian distribution of TORNADO code.. . . .

Bkt )2 find that the threshold for the Another merit of our code is that the iteration number
the form p(k) ~ """, We find tha ! required for convergence of decoding is very small. The it-
exponential distribution rapidly increases withia and con- o ation numbers of our code and therRNADO code are com-
verges to 0.465, a value much lower than the threshold fop, ey in Fig.ga) as a function of the erasure probability for
the power-law distribution. The case for the Gaussian distriyg ca5e ofl,..,.=610, which clearly shows that our code has
bution is observed to exhibit a similar behavior with a simi- 5 gmaller iteration number than th®RNADO code in the
lar low convergence limit. , whole region ofs. Even for the case ofiy,,> 1000 where

To more clearly demonstrate the high performance Ofhe 1ornADO code has a slightly higher threshold than our
codes on scale-free networks, we compare them with the,qe the jteration number is smaller for our code than for
TORNADO code [17,23. The threshold of our code is pre- {he 1ornaDO code over a broad region @ except near the
sented in Table | along with the parametersand y that  yhreshold[Fig.3(b)]. For an early convergence of decoding
maximize the code’s performance. Table | shows that OUprocesses, each node needs to gather messages from other
code yields better performance than #@RNADO code for  nqes quickly. This implies that graphs with smaller diam-
Omax smaller_than about 1000. Also shown in Table | is thege, may be more advantageous in reducing the iteration
average variable-node degrée of the two codes. From & mper. This in turn suggests that scale-free networks, which
practical viewpoint, it is important to design a code thatgre known to have a very small diametg+InIn N [26]
yields good performance for smalk), since the physical \yhereN is the number of nodes, may require a smaller itera-
complexity of a code, which grows with increasifig, lim-  tion number than regular random networks or small-world
its the hardware implementation of the code. For this reasometworks[27].
our code seems to be better suited to applications than the The error-correction capability of codes on scale-free net-

works can be further enhanced by adjusting the degree dis-

TABLE |. Error-correction capabilities of scale-free networks tribution, especially in the low-degree region, so that it more
(SFNs and thetornADO code[23] of rateR=0.5, and parameters  closely models realistic scale-free networks whose degree
and « optimizing the SFN. The optimization was done by using adistribution does not necessarily follow a power law for

direction set method. smallk. While doing this, we try to keep as small as possible
the number of parameters added to the generating function.
Omax Y o SFN TORNADO [23] After a number of numerical simulations we found the fol-
o (k) o (k) lowing generating function adequate for this purpose:

9 1.347 -1.473 0.47875 2.97 0.44546 3
16 1.788 -1.102 0.48633 3.30 0.46950 35 TABLE Il. Performance of codes on scale-free netwofks.
28 2.024 -0.868 0.49163 3.57 0.48235 4 (5)]. The same optimization parametetsand y as in Table | are
47 2088 -0.775 0.49477 3.88 0.48960 4.5 used.

79 2.084 -0.753 0.49689 4.24  0.49380 5

133 2.080 -0.74 0.49810 4.60 0.49628 5.5 Omax We Wa o K
222 2.086 -0.712 0.49862 4.94 0.49776 6 222 1.004 0.983 0.49885 4.94
368 2.081 -0.698 0.49895 5.31 0.49865 6.5 368 1.004 0.982 0.49923 5.31
610 2.076 -0.691 0.49920 5.68 0.49918 7 610 1.005 0.982 0.49945 5.68
1009 2.073 -0.687 0.49931 6.02 0.49951 7.5 1009 1.005 0.983 0.49955 6.01
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dmax LDPC codes possess degree distributions well fitted by
G(x) = C| wop(2)x2 +wsp(3)x+ X, p(kX<|, (5)  power-law functions with exponents close to 2. Based on this
k=4 finding, we have developed codes on scale-free networks that

have very good error-correction capabilities. The codes with
where p(k)=(k+a)~?. The performance of this code is dis- power-law degree distribution yield better performance than
played in Table II, which shows that by adding two new those with exponential and Gaussian degree distributions that
parametersv, andws, which permit the two lowest degrees have fast decreasing tails. It also would be interesting to
to vary from the power law, the performance of the code isstudy the effect of degree correlations on the performance of
increased. Addition of more parameters is expected to giva code, which is left as future work. As good error-correcting
rise to an increased performance, but at the expense of renedes, the codes on scale-free networks could find lucrative
dering the optimization process more time consuming. applications in areas as diverse as wireless communication,

In summary, we have found that many high-performancemedia and data transfer over the internet, and storage.

[1] R. Albert and A. L. Barabasi, Rev. Mod. Phys4, 47 [16] G. D. Forney, Physica A302 1 (2001); IEEE Trans. Inf.

(2002;S. N. Dorogovtsev and J. F. F. Mendes, Adv. Phys. Theory 47, No. 2(2001), special issue on codes on graphs and
1079(2002. iterative algorithms.

[2] M. Faloutsos, P. Faloutsos, and C. Faloutsos, Comput. Con‘rﬂ] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A.
mun. Rev. 29, 251(1999. Spielman, IEEE Trans. Inf. Theor¢7, 569 (2001).

. géCSa;;ge(l;?)lgng. Marehettl, and L. Pletronero, Europhys. Lett [18] N. Sourlas, NaturéLondon 339, 693(1989; Physica A302,
[4] R. Albert, H. Jeong, and A. L. Barabasi, Natgt®ndon) 401, 14(200D.
[19] I. Kanter and D. Saad, Phys. Rev. Le#i3, 2660(1999.

5] SoAfll-?l?t?érman and L. A. Adamic, Natureondon) 401, 131 [20] Y. Kabashima, T. Murayama, and D. Saad, Phys. Rev. Lett.
(1999. 84, 1355(2000.
[6] M. E. J. Newman, Phys. Rev. B4, 016131(200Y. [21] S. Franz, M. Leone, A. Montanari, and F. Ricci-Tersenghi,
[7] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Phys. Rev. E66, 046120(2002.
Barabasi, NaturéLondon) 407, 651 (2000). [22] S. Y. Chung, G. D. Forney, Jr., T. J. Richardson, and R. Ur-
[8] A. L. Barabasi and R. Albert, Scienc286, 509 (1999. banke, IEEE Commun. Leti5, 58 (2001.
[9] P. L. Krapivsky, S. Redner, and F. Leyvraz, Phys. Rev. Lett.[23] A. Shokrollahi, inProceedings of the 13th International Sym-
85, 4629(2000. posium on Applied Algebra, Algebraic Algorithms, and Error-
[10] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys. Correcting Codesedited by M. Fossorier, H. Imai, S. Lin, and
Rev. Lett. 85, 4633(2000. A. Poli, Vol. 1719 of Lecture Notes in Computer Science,
[11] S. H. Strogatz, Naturd_ondon 410, 268 (200). (Springer-Verlag, New York, 1999P. Oswald and A. Shok-
[12] C. Berrou and A. Glavieux, IEEE Trans. Commu¥, 1261 rollahi, IEEE Trans. Inf. Theory48, 3017(2002.
(1996. [24] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev.
[13] R. G. GallagerLow-Density Parity-Check CodéMIT Press, E 64, 026118(2001).
Cambridge, MA, 1968 [25] D. J. C. MacKay, S. T. Wilson, and M. C. Davey, IEEE Trans.
[14] D. J. C. MacKay, IEEE Trans. Inf. Theorg5, 399 (1999. Commun. 47, 1449(1999.

[15] T. J. Richardson and R. L. Urbanke, IEEE Trans. Inf. Theory[26] R. Cohen and S. Havlin, Phys. Rev. Le@0, 058701(2003.
47, 599(2001);T. J. Richardson, M. A. Shokrollahi, and R. L. [27] D. J. Watts and S. H. Strogatz, Natufieondon 393 440
Urbanke,ibid. 47, 619 (2007). (1998.

067103-4



