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We investigate the potential of scale-free networks as error-correcting codes. We find that irregular low-
density parity-check codes with the highest performance known to date have degree distributions well fitted by
a power-law functionpskd,k−g with g close to 2, which suggests that codes built on scale-free networks with
appropriate power exponents can be good error-correcting codes, with a performance possibly approaching the
Shannon limit. We demonstrate for an erasure channel that codes with a power-law degree distribution of the
form pskd=Csk+ad−g, with kù2 and suitable selection of the parametersa and g, indeed have very good
error-correction capabilities.
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A variety of complex networks[1] exhibit a topological
structure in which the connectivity between their constituent
nodes follows a simple power law. Examples of such scale-
free networks include the internet[2,3], the Worldwide Web
[4,5], social networks[6], metabolic networks[7], etc. Ex-
tensive studies have been made to understand the topological
features and evolving dynamics[8–10] of these networks.
While many intriguing properties concerning the structural
aspect of complex networks have been revealed thanks to
these efforts, relatively little is known about the effects of
specific connectivity structures on networks’ functional be-
havior [11]. In order to properly operate under a certain en-
vironment or, in a more active sense, to successfully accom-
plish a given task, a complex network may favor one
particular structure over another. For practical applications, it
now appears that more attention needs to be paid to thefunc-
tional aspectof these complex networks viewed as whole
systems or organisms working for particular purposes.

Recent advances in channel coding theory have led to the
perception that the state-of-the-art capacity-approaching
codes, such asTURBO codes[12] and low-density parity-
check(LDPC) codes[13–15], can be understood in terms of
graphs(or networks) consisting of nodes and edges[16]. The
function of these graphs is to carry out error correction, i.e.,
to recover original data transmitted over noisy channels, by
iteratively passing certain messages through edges connect-
ing neighboring nodes. The art of developing a high-
performance error-correcting code lies in designing a con-
nectivity structure of a graph in such a way as to make the
code built on it perform a desired function. One very impor-
tant issue concerns finding the connectivity distribution that
achieves the Shannon capacity limit. Most attempts to obtain
optimal connectivity distributions, however, have been lim-
ited to numerical optimization techniques[15,22] such as a
hill climbing method and a genetic algorithm, and a com-
plete understanding of the connectivity structure specific to
capacity-achieving codes is still lacking. Inspired by the
ubiquitous nature of scale-free networks, one may ask
whether their connectivity structure could offer any insight
into seeking good graph-based codes.

In this paper we address the question whether scale-free
networks whose connectivity distribution follows a power
law can function effectively as good error-correcting codes.

We first show that the degree distributions of LDPC codes
with the highest performance known to date are well fitted
by power-law functions. Motivated by this finding, we gen-
erate a degree distribution according to the functionpskd
=Csk+ad−g and fine-tune the parametersa and g to maxi-
mize the code’s performance. We investigate the error-
correction capability of these codes over a binary erasure
channel and compare them with theTORNADO code[17], the
first commercialized LDPC code.

The codes built on scale-free networks considered here
are basically LDPC codes in that the associated parity-check
matrices are sparse and the belief propagation algorithm
[13–15] is employed for decoding. When invented by Gal-
lager [13] in the early 1960s, LDPC codes were considered
to be impracticable to implement due to the limited compu-
tational abilities of the time, and were subsequently nearly
forgotten. It was only recently, after they were shown to
yield excellent performance comparable toTURBO codes
[14,15], that LDPC codes began to draw considerable inter-
est from the coding community. LDPC codes have attracted
attention also from the physics community, and there have
been some statistical-physics approaches in the analysis of
LDPC codes, which take advantage of the resemblance be-
tween LDPC codes and spin-glass models[18–21].

A LDPC code can be represented by a bipartite graph in
which there are two different types of nodes: variable nodes
and check nodes. Nodes of one type are connected by edges
only to nodes of the other type. Variable nodes are associated
with data bits, and check nodes examine whether the variable
nodes connected to them satisfy parity-check equations. Er-
ror correction of corrupted data bits is performed by passing
certain messages, e.g., likelihood ratios, through edges back
and forth between variable and check nodes. It is known
from density evolution analysis[15] that, under the assump-
tion of a tree-structured random graph with no closed loops,
the error-correction capability of a code is solely determined
by the degree distribution. Codes with irregular degree dis-
tribution have been found to substantially outperform those
with regular degree distribution.

We begin by inspecting the degree distributions of some
high-performance LDPC codes. Figure 1(a) shows the
variable-node degree distribution of the LDPC code designed
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by Chunget al.[22], which has been optimized for an addi-
tive white Gaussian noise channel and approaches the Shan-
non limit within 0.0045 dB, presently the world record.
Here, in order to obtain a meaningful distribution from the
irregularly spaced datalskid in Table II of Chunget al.[22],
we took a local average over a bin of lengthski+1−ki−1d /2:

pskid =
Pskid

ski+1 − ki−1d/2
, s1d

where Pskid is the fraction of nodes with degreeki and is
given by Pskid=Clskid /ki, in which lskid is the fraction of
edges connected to a variable node of degreeki and C is a
normalization constant. It can be seen from Fig.1(a) that the
degree distribution is well fitted by a power-law function
pskd,k−g with g.2.14. A more dramatic correspondence is
observed for the variable-node degree distribution of the
TORNADO code [17,23], as is clearly seen in Fig.1(b). The
TORNADO code has been optimized for an erasure channel
and has a Poisson distribution for its check-node degree dis-
tribution. The power-law function that best fits the variable-
node degree distribution is found to have an exponentg
.2.02, and the fitting appears to be nearly perfect for large
k. We also find that the right-regular sequence of Shokrollahi
[23] that slightly beats theTORNADO sequence is well fitted
by a similar power-law function.

The fact that many high-quality LDPC codes have degree
distributions well fitted by power-law functions stimulated us
to test scale-free networks as error-correcting codes. Follow-
ing the approach of Newmanet al.[24], we write the gener-
ating function for a general scale-free network in the form:

Gsxd = o
k=0

dl−1

akx
k + o

k=dl

dmax

pskdxk, s2d

where the fraction of nodes with degreekùdl follows a
power law pskd=Ck−g, and the termsak with low degree
k,dl are separated from the second sum to allow for pos-
sible deviation from the power law for smallk, as is often the
case for general scale-free networks. The generating function
in Eq.(2), however, contains too many parameters to be ame-
nable to numerical optimization unlessdl is sufficiently

small. To reduce the number of parameters while still retain-
ing the possibility that the distribution for low degrees may
not obey an exact power law, we instead choose the follow-
ing generating function:

Gsxd = o
k=0

dmax

pskdxk, s3d

wherepskd=Csk+ad−g. If a,0 sa.0d, the degree distribu-
tion for small k lies above(below) the power-law function
k−g. We henceforth use Eq.(3) to generate a variable-node
degree distribution of our code and optimize the parameters
a andg to achieve the best performance.

Some empirical results known about LDPC codes help us
to further refine our code. The most well known findings
related to features of good LDPC codes may be that the
variable nodes of degree 1 should be removed since they do
not contribute to error correction and that the codes with
almost uniform check-node degree yield good performance
[15,22,25]. Taking these into account, we let the sum in
Eq.(3) start fromk=2, and restrict the check-node degree to
two consecutive integers: the generating function for the
check-node degree is written asFsxd=bxi +s1−bdxi+1, where
the parametersb andi are easily determined once a variable-
node degree distribution is selected. This choice of the
check-node degree distribution enables us to design a code
without restrictions ondmax for any given code rate; this
property, however, is not shared by the right-regular se-
quence[23] for which dmax is allowed to have only a special
set of values.

The performance of an LDPC code over a binary erasure
channel can be evaluated by the density evolution method
[15] as follows. Letd be the erasure probability of a given
channel, and consider a code with a degree distribution pair
lsxd=olkx

k−1 and rsxd=orkx
k−1, wherelk srkd is the frac-

tion of edges connected to a variable(check) node of degree
k. Note that the distribution here is defined in terms of the
fraction of edges, not the fraction of nodes as before. Then, if
the belief propagation algorithm is used for decoding, the
messages passed between the variable and check nodes are
known to evolve as[15,17]

xl = x0l„1 − rs1 − xl−1d…, s4d

wherexl denotes the expected fraction of erasure messages at
the lth iteration andx0 is its initial value given byx0=d. The
recovery of original data is successfully done ifxl converges
to zero. The thresholdd*, defined by the supremum of alld
that result in successful decoding, tells the code’s perfor-
mance. For a given code rateR, the threshold is upper
bounded by the channel capacity1−R [17].

With the help of the above density evolution method, we
calculate the error-correction capability of the scale-free net-
works given in the form of Eq.(3). The results are shown in
Fig.2 as a function of the maximum variable-node degree
dmax, where the code rate is fixed atR=0.5. It is seen that the
threshold erasure probabilityd* increases as the maximum
variable-node degree increases. For largedmax, the threshold
almost reaches the theoretical upper bound 1−R, indicating
that the error-correction capability of our code is very good.

FIG. 1. Degree distributions for high-performance LDPC codes.
(a) The LDPC code designed by Chunget al. (Table II of [22]). (b)
The TORNADO code with maximum degreedmax=610 [17,23]. The
best fitting lines have slopes(a) g.2.14 and(b) g.2.02.
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For comparison, we have also studied the error-correction
capability of codes that have degree distributions other than
the power-law distribution, namely, an exponential distribu-
tion of the formpskd,e−bsk+ad and a Gaussian distribution of

the form pskd,e−bsk+ad2. We find that the threshold for the
exponential distribution rapidly increases withdmax and con-
verges to 0.465, a value much lower than the threshold for
the power-law distribution. The case for the Gaussian distri-
bution is observed to exhibit a similar behavior with a simi-
lar low convergence limit.

To more clearly demonstrate the high performance of
codes on scale-free networks, we compare them with the
TORNADO code [17,23]. The threshold of our code is pre-
sented in Table I along with the parametersa and g that
maximize the code’s performance. Table I shows that our
code yields better performance than theTORNADO code for
dmax smaller than about 1000. Also shown in Table I is the
average variable-node degreekkl of the two codes. From a
practical viewpoint, it is important to design a code that
yields good performance for smallkkl, since the physical
complexity of a code, which grows with increasingkkl, lim-
its the hardware implementation of the code. For this reason,
our code seems to be better suited to applications than the

TORNADO code.
Another merit of our code is that the iteration number

required for convergence of decoding is very small. The it-
eration numbers of our code and theTORNADO code are com-
pared in Fig.3(a) as a function of the erasure probability for
the case ofdmax=610, which clearly shows that our code has
a smaller iteration number than theTORNADO code in the
whole region ofd. Even for the case ofdmax.1000 where
the TORNADO code has a slightly higher threshold than our
code, the iteration number is smaller for our code than for
the TORNADO code over a broad region ofd, except near the
threshold[Fig.3(b)]. For an early convergence of decoding
processes, each node needs to gather messages from other
nodes quickly. This implies that graphs with smaller diam-
eter may be more advantageous in reducing the iteration
number. This in turn suggests that scale-free networks, which
are known to have a very small diameterd, ln ln N [26]
whereN is the number of nodes, may require a smaller itera-
tion number than regular random networks or small-world
networks[27].

The error-correction capability of codes on scale-free net-
works can be further enhanced by adjusting the degree dis-
tribution, especially in the low-degree region, so that it more
closely models realistic scale-free networks whose degree
distribution does not necessarily follow a power law for
smallk. While doing this, we try to keep as small as possible
the number of parameters added to the generating function.
After a number of numerical simulations we found the fol-
lowing generating function adequate for this purpose:

TABLE I. Error-correction capabilities of scale-free networks
(SFNs) and theTORNADO code[23] of rateR=0.5, and parametersg
anda optimizing the SFN. The optimization was done by using a
direction set method.

dmax g a SFN TORNADO [23]

dp kkl dp kkl

9 1.347 −1.473 0.47875 2.97 0.44546 3

16 1.788 −1.102 0.48633 3.30 0.46950 3.5

28 2.024 −0.868 0.49163 3.57 0.48235 4

47 2.088 −0.775 0.49477 3.88 0.48960 4.5

79 2.084 −0.753 0.49689 4.24 0.49380 5

133 2.080 −0.74 0.49810 4.60 0.49628 5.5

222 2.086 −0.712 0.49862 4.94 0.49776 6

368 2.081 −0.698 0.49895 5.31 0.49865 6.5

610 2.076 −0.691 0.49920 5.68 0.49918 7

1009 2.073 −0.687 0.49931 6.02 0.49951 7.5

TABLE II. Performance of codes on scale-free networks[Eq.
(5)]. The same optimization parametersa and g as in Table I are
used.

dmax w2 w3 dp kkl

222 1.004 0.983 0.49885 4.94

368 1.004 0.982 0.49923 5.31

610 1.005 0.982 0.49945 5.68

1009 1.005 0.983 0.49955 6.01

FIG. 2. Error-correction capability of optimized scale-free net-
works over a binary erasure channel. The code rate isR=0.5.

FIG. 3. Iteration numbers of optimized scale-free networks
(solid curve) and theTORNADO code(dashed curve) for maximum
degrees(a) dmax=610 and(b) dmax=1009. The criterion for conver-
gence of decoding is set to bexl ,1310−6.
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Gsxd = CFw2ps2dx2 + w3ps3dx3 + o
k=4

dmax

pskdxkG , s5d

wherepskd=sk+ad−g. The performance of this code is dis-
played in Table II, which shows that by adding two new
parametersw2 andw3, which permit the two lowest degrees
to vary from the power law, the performance of the code is
increased. Addition of more parameters is expected to give
rise to an increased performance, but at the expense of ren-
dering the optimization process more time consuming.

In summary, we have found that many high-performance

LDPC codes possess degree distributions well fitted by
power-law functions with exponents close to 2. Based on this
finding, we have developed codes on scale-free networks that
have very good error-correction capabilities. The codes with
power-law degree distribution yield better performance than
those with exponential and Gaussian degree distributions that
have fast decreasing tails. It also would be interesting to
study the effect of degree correlations on the performance of
a code, which is left as future work. As good error-correcting
codes, the codes on scale-free networks could find lucrative
applications in areas as diverse as wireless communication,
media and data transfer over the internet, and storage.
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